
University of Illinois at Urbana-Champaign
Department of Electrical and Computer Engineering

ECE 298JA Fall 2015

Matlab Tutorial

1 Overview

The goal of this tutorial is to help you get familiar with MATLAB and to learn the basics of how to do
computations and create plots in MATLAB.

2 Getting Started

• Get familiar with MATLAB by using tutorials and demos found in MATLAB. You can click Start

≫ MATLAB ≫ Demos to start the help screen.

• Your MATLAB interface will have a number of windows tiled together, such as the command window,
current directory, workspace (which shows your current variables), and editor (where you can write
and save scripts). You can move these windows around by clicking and dragging with the mouse.

• In the command window, type help or doc followed by a command to get information about the
command. Try the following:

>>help plot

>>help stem

>>help cos

>>help sin

>>help exp

>>doc for

>>doc ones

>>doc zeros

• What if you do not know a command name? Type helpdesk to start the help window. You can
then type keywords in the search bar. Also, Google can be very useful to find MATLAB commands,
since its search engine is more powerful.

• Variables in MATLAB can hold numbers (dimensions 1 x 1), vectors (dimensions 1 x N or N x 1) or
matrices (dimensions N x M):

>>x = ones(1,1)

>>x = ones(1,5)

>>x = zeros(5,1)

>>x = zeros(5,6)

• Putting a semicolon after a variable assignment prevents unnecessary ‘echoing’ (try the following):

1



>>x = ones(2,2)

x =

1 1

1 1

>>x = ones(2,2);

• You may repeat recently used commands by hitting the up arrow until you find the desired command,
then press Enter.

Exercise 1
1) Find some MATLAB commands that generate random numbers (there are a few).
2) Generate a 3 × 3 random matrix.

• The result of a computation can be assigned to a variable (e.g. x, as shown below). If you type
a variable name into the command window without a semicolon, MATLAB will show you what is
stored in that variable. If your computation is not assigned to a variable, MATLAB stores it in the
variable ans.

>>x = 0.25*0.25;

>>x

x=

0.0625

>>0.25*0.25

ans =

0.0625

• It is very easy to manipulate complex numbers in MATLAB. You can assign a complex number of
the form a+b*1i directly to a variable and perform arithmetic operations (it is recommended to use
1i or 1j instead of i or j to accelerate your code):

>>x = 2+3*1i

>>y = 3+4*1j

>>x+y

ans =

5.000 + 7.000i

Exercise 2
1) Find MALAB commands to calculate the conjugate, absolute value, real and imaginary part of a complex
number.
2) Calculate the conjugate, absolute value, real part and imaginary part of 3 + 4i

• ‘Loops’ allow us to perform an operation repeatedly based on an index. In MATLAB, a simple ‘for
loop’ to construct the vector x=[0,1,2...9] can be written (where n is the index) as,

>> for n = 1:10

x(n) = n - 1;

end

>> x

• We will learn later how to save code such as loops in a script. For now, notice that MATLAB does
not perform the computation (e.g. does not return to ‘>>’) until you type ‘end’

2



• The above loop generates integers from 0 to 9. You can also use a ‘while loop,’ which performs the
operation until some criteria is met

n=0

while n <10,

x(n) = n-1;

n = n+1;

end

• In general MATLAB is not very efficient with loops. We will see later that one can avoid some loops
by using the colon operator (for instance, above you can just set x=[0:9]). See more information
about flow control in Matlab in help under :

MATLAB/Getting Started/Programming/Flow Control .

3 MATLAB functions for creating & manipulating vectors and ‘signals’

‘Signals,’ as we refer to them in electrical engineering, are sets of values that may be functions of time or
space (e.g. y(x) = f(x), y(t) = f(t), y(t) = f(x(t)), a speech waveform, a video), which are often expressed
as vectors. In ECE 298, in addition to using MATLAB for large calculations, you will explore various
mathematical functions using MATLAB, which are related to real-world signals and physics. To learn how
to manipulate real-world signals, you may consider taking Signal Processing (ECE 310/311) in the future!

• The colon operator can be used to define a vector. Let us say we want to create a vector x which
holds the integers from 0 to 100. One way is to use a loop. Another way to do this is shown below,

>> x = [0:100];

• All vectors in MATLAB are indexed starting with 1

>> x(1)

ans =

0

>> x(2)

ans =

1

• Trigonometric functions, such as sines and cosines, are used often in mathematics and maybe com-
posed to form ‘signals’ (e.g. music). A continuous-time, complex exponential function has the form
αt, where α is a complex scalar. Sine and cosine functions can be built from complex exponential
functions by setting α = e±i2πf ,

cos(2πft) =
1

2

(
ei2πft + e−i2πft

)
sin(2πft) =

1

2

(
ei2πft − e−i2πft

)
• Note that in MATLAB, t will not be a continuous variable, rather we can solve for the sine and

cosine values as a set of time values stored in t.

3



MATLAB has functions cos, sin and exp to create vectors using these mathematical functions.

Exercise 3
Generate the following vector

x(t) = sin(
2πt

5
), for 501 points over the interval t = [0, 5]

1) Define t

>> t = 0:0.01:5;

2) Generate x(t)

>> x = sin(2*pi*t/5);

3) Plot this sine function for the given values of t using plot command

>> plot(t,x);

4) Try this with far fewer samples, t=0:5. In this case the curve that results from the plot command is
misleading - why?

• MATLAB has several commands to help you label the plots appropriately, as well as to print them
out. title places its argument over the current plot as the title. xlabel and ylabel allow you to
label the axes. Every plot or graph you generate must have a title and the axes must be labeled
clearly.

Exercise 3 (continued)
4) Label the plot

>> title(‘A sine signal: sin(2*pi*t/10)’);

>> xlabel(‘t (Seconds)’);

>> ylabel(‘Amplitude’);

• MATLAB also allows you to add, subtract, multiply, divide, scale and exponentiate vectors. let us
define the two signals x1 and x2,

>>x1 = sin((pi/4)*[0:15]);

>>x2 = cos((pi/7)*[0:15]);

Try the following

>>y1 = x1 + x2

>>y2 = x1 - x2

>>y3 = x1 .* x2

>>y4 = x1 ./ x2

>>y5 = 2*x1

4



>>y6 = x1 .^2

>>y7 = x1 * x2

>>y8 = x1 * x2’

For multiplying, dividing, and exponentiating on a term by term basis (‘element-wise’), you must
precede the operator with a period .* instead of * alone. Also note x2’ converts the row vector x2
into a column vector, computing the conjugate transpose (‘hermitian’ transpose) of the argument. If
you want to transpose x2 without conjugating it use x2.’.

4 MATLAB scripts and functions

• MATLAB allows us to create m-files to save lists of commands. There are two types of m-files:
‘scripts’ and ‘functions’

• A command ‘script’ is a text file of MATLAB commands whose filename ends in a .m, saved in the
current working directory (or elsewhere in your MATLAB path). A script has no input or output
arguments. If you type the name of the file (without .m) in the command prompt, the commands
contained in the script file will be executed.

Exercise 3 (continued)
5) Create a script file based on Example 1 and run it from the terminal.

• An m-file implementing a ‘function’ is a text file with a title ending in ‘.m’ whose first word is
function. The rest of the first line of the file specifies the input and output arguments.

• The following m-file is a function called foo. It accepts input x and returns y and z which are equal
to 2*x and 5/9*(x-32) respectively

function [y,z] = foo(x)

%[y,z] = foo(x) accepts a numerical argument x and

% returns two arguments y and z, where y is 2*x and z is (5/9)*(x-32)

y = 2*x;

z = (5/9)*(x-32);

Copy and paste the above text into a .m file, and save it in your current directory as foo.m. Try

>> help foo

>>[y,z] = foo(-40)

>>[y,z] = foo(225)

Exercise 4
Create a function that takes the period of the signal as the input and the signal as the output. Run the
function from the terminal. Try f = 1/5, 1/10, etc.

function x = my_sine(f)

%% generating a sine signal

t = 0:0.01:5; x = sin(2*pi*f*t);

stem(t,x);

title([‘A sine signal: sin(2*pi*t’,num2str(f),’)’]);

xlabel(‘t (Seconds)’); ylabel(‘Amplitude’);

5


